Trouvez les meilleures technologies du CNRS pour mener à bien votre projet d’innovation.
06.11.2018
Matériaux – Revêtements 07293-01
06.11.2018
Matériaux – Revêtements 10581-01
06.11.2018
Chimie 08758-01
06.11.2018
11127-01
06.11.2018
Environnement et Energie 11107-01
19.10.2018
Diagnostic médical 08504-01
Nous pouvons vous accompagner sur toute votre
démarche de transfert de technologies.
Grâce à notre expérience, nos réseaux et notre connaissance de l’écosystème de l’innovation nous vous accompagnons tout au long de votre projet.
85780-01
Priority patent application N° FR 0304285 filed on April 07, 2003 entitled «Procédé d’obtention d’une composition de nanoparticule d’au moins un oxyde métallique cristallin »,
Myrtil KAHN
André MAISONAT
Bruno CHAUDRET
Miguel MONGE
Collaborative Research Agreement, exclusive or non-exclusive licenses
Laboratoire de Chimie de Coordination, UPR8241, CNRS, Toulouse, France
Due to their specific physical properties (optic, magnetism, and conductivity), metal oxide nanoparticles are attracting a lot of industrial interest and are already used for numerous applications in cosmetics, for medical diagnosis or as medical tools, or as new devices for optical and electronic applications. The existing methods for the synthesis of metal oxide nanoparticles require either several complicated steps, expensive and complex set-ups, lead to low reaction rates or to uncontrolled sized and shaped particles.
These inventions relate to a new, simple, reliable and inexpensive method to synthesize metal or metal oxide nanoparticles displaying controlled and customized size and shape.
These particular inventions relate to versatile processes allowing control over size and shape, and leading to either metallic or metal oxide nanoparticles dispersable in every desirable solvent, especially in water.
The patented process displays 2 main advantages, compared to the existing ones:
1) it is a one step process involving simple products;
2) it takes place at room temperature.
The nano materials obtained can be stoked as powders and re-suspended on demand in every desirable solvent without neither ligand exchange nor the formation of interdigitated layers.
Metal oxides nanoparticles
In this case, the strategy is based on the use of water sensitive high energy organometallic complexes and on the very exothermic reactions that they display.
The kinetics of this reaction controls the formation of the nanomaterials.
Therefore a controlled hydrolysis and/or oxidation of the precursor in solution leads, in one step and at room temperature, to metal oxide nanoparticles.
The shape and size of these nanoparticles can be controlled by the different parameters of the system (such as the nature of the organometallic precursor, the ligands or surfactants present, the solvent used for example,) as well as their 2D and 3D organizations.
Specific physical properties can be achieved following such process like optical properties depending on the excitation wavelength or nanovaristors.
Magnetic metal oxide nanoparticles
Following the same process, magnetic nanoparticles can be prepared. Pure phase of iron oxide can be achieved such as maghemite (g-Fe2O3), wüstite (Fe1-yO) or mixte metal oxide such as cobalt ferrite (CoFe2O4) nanoparticles.
03.10.2013
Chimie, Matériaux – Revêtements 00359-01
02.10.2013
Matériaux – Revêtements 02677-01 -02
01.10.2013
Matériaux – Revêtements 02382-01
06.11.2018
Matériaux – Revêtements 07293-01
06.11.2018
Matériaux – Revêtements 10581-01
06.11.2018
Chimie 08758-01
06.11.2018
11127-01
06.11.2018
Environnement et Energie 11107-01
19.10.2018
Diagnostic médical 08504-01